- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Klepov, Vladislav V. (2)
-
Misture, Scott T. (2)
-
zur Loye, Hans-Conrad (2)
-
Aziziha, Mina (1)
-
Ballor, JoAnn (1)
-
Berseneva, Anna A. (1)
-
Besmann, Theodore M. (1)
-
Boehlert, Carl J. (1)
-
Carone, Darren (1)
-
Devaraj, Arun (1)
-
Gelis, Artem V. (1)
-
Hines, Adrian T. (1)
-
Jacobsohn, Luiz G. (1)
-
Kanatzidis, Mercouri G. (1)
-
Koury, Daniel (1)
-
Misture, Scott (1)
-
Pal, Koushik (1)
-
Poplawsky, Jonathan D. (1)
-
Schaeperkoetter, Joseph (1)
-
Schaeperkoetter, Joseph C. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
β-titanium (β-Ti) alloys are useful in diverse industries because their mechanical properties can be tuned by transforming the metastable β phase into other metastable and stable phases. Relationships between lattice parameter and β-Ti alloy concentrations have been explored, but the lattice parameter evolution during β-phase transformations is not well understood. In this work, the β-Ti alloys, Ti-11Cr, Ti-11Cr-0.85Fe, Ti-11Cr-5.3Al, and Ti-11Cr-0.85Fe-5.3Al (all in at.%), underwent a 400 °C aging treatment for up to 12 h to induce the β-to-ω and β-to-α phase transformations. Phase identification and lattice parameters were measured in situ using high-temperature X-ray diffraction. Phase compositions were measured ex situ using atom probe tomography. During the phase transformations, Cr and Fe diffused from the ω and α phases into the β matrix, and the β-phase lattice parameter exhibited a corresponding decrease. The decrease in β-phase lattice parameter affected the α- and ω-phase lattice parameters. The α phase in the Fe-free alloys exhibited α-phase c/a ratios close to those of pure Ti. A larger β-phase composition change in Ti-11Cr resulted in larger ω-phase lattice parameter changes than in Ti-11Cr-0.85Fe. This work illuminates the complex relationship between diffusion, composition, and structure for these diffusive/displacive transformations.more » « less
-
Berseneva, Anna A.; Klepov, Vladislav V.; Pal, Koushik; Seeley, Kelly; Koury, Daniel; Schaeperkoetter, Joseph; Wright, Joshua T.; Misture, Scott T.; Kanatzidis, Mercouri G.; Wolverton, Chris; et al (, Journal of the American Chemical Society)
-
Carone, Darren; Klepov, Vladislav V.; Misture, Scott T.; Schaeperkoetter, Joseph C.; Jacobsohn, Luiz G.; Aziziha, Mina; Schorne-Pinto, Juliano; Thomson, Stuart A.; Hines, Adrian T.; Besmann, Theodore M.; et al (, Inorganics)A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation.more » « less
An official website of the United States government
